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Absb.et. The phase diagrams of Heisenberg antiferromagnets with frustrated exchange 
interactionsare obtained by using the self-consistent spin-wave approximation. Thesquare, 
simple-cubic and quasi-io antiferromagnets are considered with different values of spin S. 
An important role of spin-wave renormalizations of exchahge parameters is demonstrated. 
The temperature dependences of the correlation length and spin-wave damping are calcu- 
lated. It is shown that a wide temperature region above T, with a strong short-range order 
exists in frustrated 3D systems. 

1. Introduction 

Recently, interest has grown in the problem of the ground state of frustrated two- 
dimensional (ZD) spin systems [l-81. This is connected mainly with the discovery of 
qUaSi-ZD antiferromagnetism in La,Cu04 and YE%a2Cu306. It was supposed that the 
destruction of long-range magnetic order by current carriers in these compounds on 
doping is related to the nature of high-T, superconductivity and to normal-phase anom- 
alous properties of such systems [9]. The question about the possibility of imitation 
of frustrations via current carriers by 'competing' exchange interactions in the simple 
Heisenberg model is not trivial. However, the treatment of the latter model is in any 
case of interest from both a theoretical and an experimental point of view. Of great 
importance is the problem of the formation of an we-type state with long-range order 
(LRO) suppressed and unusual order parameters. This problem is actual for some three- 
dimensional (3D) systems which demonstrate frustrated antiferromagnetism and a large 
linear term in the specific heat. An analysis of corresponding experimental data for the 
system Y,-,Sc,Mn2, for heavy-electron compounds as well as for some systems with 
charge (pseudospin) degrees of freedom (e.g. Sm,Se, and Fe,O,) was made in [IO, 111. 

Quantitative treatment of the phase diagrams of low-dimensional magnetic systems 
is possible within the self-consistent spin-wave theory (ssm) [12,13], which is widely 
exploited now. (Earlier versions of the s s m  have been proposed in [14, U].) The 
consideration of the square lattice in the next-nearest-neighbour approximation was 
carried out at T = 0 in [Hi]. The aim of the present work is to investigate the phase 
diagram and magnetic properties for ZD and 3D cases both in the ground state and for 
finite T. 

The plan of the paper is as follows. In section 2 we consider the spin-wave correction 
to the sublattice magnetization of an antiferromagnet and the equations of the s s m .  In 
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section 3 we investigate the phase diagram of the square lattice in the ground state for 
different values of spin S and calculate the temperature dependences of the correlation 
length and magnon damping near the frustration point. In section 4 we treat the ground- 
state phase diagram of the simple-cubic lattice in the next-nearest-neighbour approxi- 
mation. In section 5 we discuss the short-range order (SRO) above the Nee1 temperature 
TN in the 30 case. 

V Yu Irkhin et a1 

2. Spin-wave corrections to the sublattice magnetization in frustrated systems and self- 
consistent equations 

We consider the Heisenberg Hamiltonian 

H = X J,,s, .s, = X J ~ S ,  . s-, (1) 
'I V 

with J, the Fourier transforms of the exchange parameters. The suppression of long- 
range antiferromagneticorderingowing to frustrations may be demonstrated by a simple 
spin-wave treatment. The correction to the sublattice magnetization due to zero-point 
oscillations has the form 

6s = -E U: (2) 
1 

U: = tS(2Jq + .I,+, + J Q - ,  - 4Jp)/0, - 4 
where Q is the wavevector of the AFM structure ( J e  = J,,,) and up is the magnon 
frequency given by 

Consider the 2D case and assume that, at q - +  0, 

where p > 0 and f ( q )  - 1 is a positive function of the polar angle of the vector q. The 
frustration situation corresponds to a-0. Then we have 

w', = 2 S z ( J p  - J9)(2JQ - .le+, - J p - , ) .  (3) 

Je+, +IQ-, - 2Je = fcqZ + 1Pq4f (q) 

which yields s = 0 in some region I a1 < p exp( -S/u). A scaling consideration [l] shows 
that this result is valid to the leading order in the quasi-classical parameter 1/S which 
plays the role of acouplingconstant. For thesquarelattice in the next-nearest-neighbour 
approximation we have 

J ,  = 2I(cosq, + cosqy) + ~ I ' c o s ~ ,  cosq, 

J ,  = 21 COS qx +  C COS qy 

ff = I - 21'. ( 5 )  
A formally similar situation occurs for a quasi-ID antiferromagnet with a weak ?D or 

3D exchange interaction, where 

and 
(6) 

J ,  = zi(C0s 4. + COS q v )  + 21 COS qa 
respectively; I. Then we obtain 

6 s  = - (1/2n) In(r/i) 
which results in s = 0 at i<: I exp(-hS). 

(7) 
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To treat the two-sublattice antiferromagnet in the quantum case we apply the self- 
consistent modified spin-wave theory [13] .  Using the Dyson-Maleev representation 

Si =a: S: = (2s - a:a,)a,  S; = S - a:a, 

S i  = -b  m S; = bL(2S - bLb , )  S& = b L b ,  - S 

and introducing the 'renormalized' exchange interactions 

y s  = 2 x  J,-,(adb?,) y ;  = 2x J;-,(a,+ap) 
P P 

we obtain the equations of the SSWT in the form 

S t $=Efhcoth($)  + s  
k 

where 

A p  = Y o  + U; - U(, - P E, = (A: - y;)'/' 

I E A  

m E B  (9) 

s is the staggered magnetization (the terms with S correspond to picking out the 
contribution with k = 0 and describe the boson condensate), E' stands for the sum over 
k # 0, and p is the chemical potential of the bosons. 

One can see that the SSWT yields the gap in the magnon (spin-wave) spectrum for the 
state without LRO. This circumstance is not quite satisfactory, e.g. in the case of the 
linear chain with a half-integer spin, where elementary excitations are known to be 
gapless, despite the fact there is no LRO in the ground state. It should be noted that the 
gap, which occurs in the ssw, is proportional to exp( -nS) and is numerically small even 
for S = 4. On the other hand, the SSWT (bosonic mean-field theory) is in a fairly good 
agreement with the scaling consideration [I61 and, as noted in [12],  works well for 
systems with LRO in the ground state, which are mainly treated in the present paper. As 
regards the gap, which arises at finite temperatures, it turns out to be smeared by the 
spin-wave damping (see below in sections 3 and 5). 

3. Phase diagram of the square lattice and the correlation length 

Consider the two-dimensional case ( 5 ) .  At small I'/lthe AFM ordering with Q = (n, n) 
is realized and the solution has the form 

u p  = MCOSP, t COSP,) y; = y ' c o s p ,  cosp,. ( 1 5 )  

A, = y t y'(cosp, cosp, - 1) (16)  

Substiututing (15) into (12)-(14) we derive (T  = 0) 

1 = E ' L  (cosp, + cosp,)Z + 4 s  
I P EP 
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Figure I. Values of s for the phases with Q = (n, n) 
(-) and Q = (n. 0) (---) for different S. 

Figure 2. The total energy of the 
and Q = (n, 0) (---) for different S. 

= (n. ’z) (-) 

- = 4 x ’ L o s p ,  Y‘ cosp, + 4s.  
I’ P 

Besides the phase with Q = (n, n) we have to take into account the AFM phase with Q = 
(n, 0) which corresponds to large l ‘ / I .  The corresponding solution may be represented 
as 

y p  =y*cosp,+y’cosp,cosp, y; = y’ cos px cos py (19) 

ap = y X  + Y’ + Y,(COSP, - 1) 
and equations (12)-(14) take the form 

Y X  ‘ Y P  - = 2 2  - cosp, + 2s 
I P EP 

P 

Y’ ’ 7, 
P E P  

7 = 4 2  -cosp, cosp, + 4s. 
The results of numerical solution of equations (ll), (17), (18) and (20) for different S 
are given in figures 1 and 2. One can see that 3, corresponding to the phase with Q = 
(n, n), vanishes for I ‘ / l >  4 (in particular for S = t the critical valuep, = (1’/Qc = 0.61 
[S-S]). This seems to contradict the above scaling consideration since the point I ’ l l  = 1 
corresponds to the absolute instability of the (n, n) structure. Besides this, the depen- 
dence of pc versus S turns out to be non-monotonic. So, p,(S = 1) = 0.69 and p,(P) = 
0.65. Even for S = lO,p, turns out to be far from the classical value of 1. These paradoxes 
may be resolved if we plot the phase diagram versus the ratio of ‘renormalized’ exchange 
parameters y‘ and y rather than the ratio of the bare parameters (figure 3). Then the 
critical value of y ’ / y  increases monotonically with increasing S, and the point y ’ / y  = 
0.5 is unreachable. Thus the renormalization of exchange parameters turns out to 
play an important role in the phase diagram. As follows from figure 1, the solution 
corresponding to Q = (n, 0) arises before the instability point of the Q = (a, n) phase 
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Figure 3. Values of s’ for Q = (R, R) versus ratio of 
the renormalized exchange parameters y ’ fy ,  

Figure 4. Values of s’ for lhe Q = (R. R, R )  and Q = 
(R, R, 0) phases for the simple-cubic latlice, S = t. 

for any S. Thus the non-magnetic sein-liquid state does not occur in the approximation 
under consideration. However, quantum effects may be important in the region of 
coexistence of the magnetic phases and change the situation. 

Now we consider the behaviour of a 2D frustrated antiferromagnet at finite T .  For 
T G I the LRO is absent, but pronounced SRO with a large correlation length 5 exists. The 
latter quantity determines the gap in the spectrum of the bosons E,. 

Expanding E ,  in k ,  E-’ = (2/y6)”’A (where A = (A; - y;)’’’ is the gap in the 
spectrum, and 6 = y - 2y‘ is small near the frustration point) we obtain 

E: = yS(k: + k : ) / 2  + yy’k:k:/2 + y6/2E2. 

For = 0, equation (11) gives 

Then we obtain 

s(0) - ( l /n)(y/26)’ / ’5-’(0)  = - (2T/n6)  ln(2 ~inh[(l/2TE)(y6/2)’/~]]. (23) 

The second term on the left-hand side of (23) is absent if the ground state possesses LRO 
(s(0) # 0). Later we consider this case. Then we obtain 

(Note that, in the classical limit 8- m, we have y = 2(2S + 1)1 and y’ = 2(2S + l)Z’.) 
Thus at J +  T9- 6 the correlation length demonstrates non-exponential behaviour. 
Generally speaking, our approximation, corresponding to the one-loop approximation 
[16], does not yield correctly the pre-exponential factor in E(T). However, the weak- 
ening of the T-dependence of E seems to be reasonable. 
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To clarify the physical meaning of thegap A we calculate the magnon damping which 
arises on considering corrections to the mean-field theory. Using, similar to [17], the 
diagram technique approach we derive for the damping 

6 ( E k  + E p  -Et+p-q - E q ) M n ( k P , 4 , k + p - q )  (25) 
where 

M&P, 4, r) = ( I / E t E p ~ r E v ) [ ( ~ r *  4 - ErEV)(2ak ’P - EkEp) 

+ ( ~ ~ . r - E p E , ) ( 2 a R . Q - E t E ~ )  + ( 2 q . 4 -  EpEq)(2cYk‘r- EkE,)] 

is the magnon-magnon scattering amplitude, 

a = -[(l/u,)(aZJ,/aq:)lp=o Eh  = E t / &  
andn, = n(Ek) is the Bose distribution function. Fork + A/(y6)’P, the renormalization 
of the spectrum Ek and the presence of the energy gap are not important, and we 
reproduce the results of [17]. However, at k+ 0 the damping in sswr remains finite; 

ro - (T/s~)~A.  (26) 
At T 4  S6, both A and To are exponentially small. At T >  S6 the gap is completely 
smeared by the damping. 

It should be noted that similar results may be obtained in the quasi-11, case. The 
solution to equations (11) and (12) corresponding to (6) has the form 

Y p = Y ~ S P x + ? ~ S P y  
and we obtain for the correlation length 

s(0) - f[2n(yp).)”*~(O)]-’ = -(T/n)(y?)-’/’ ln[2sinh(f/2/25T)] 
(27) f =  [ y ( y  + ?)]”Z. 

Since, in the s s w ,  5 is large even in the ground state of the linear chain with S = 4 
(E-’(O) = 0.17), the approximation (27) is satisfactory for arbitrary [ / I  c 1. 

4. Ground state of the simple-cubic lattice in the next-nearest-neighbour approximation 

It is instructive to investigate, within the self-consistent theory, frustrated 3D systems. 
As an example we consider the simple-cubic lattice in the next-nearest-neighbour 
approximation where 

J, = 2l(cos qx + cos qy + cos q z )  

+41’(cosq,cosqy +cosq,cosq, +cosq,cosq,). (28) 
We treat the case of antiferromagnetic exchange interactions I > 0, I ’  > 0. In the 
classical limit the minimum of the exchange energy is realized for the AFM structure with 
Q = (a, n, n) at I‘< I/4 and with Q = (x, n, 0) (and with cyclic permutations) at I‘ 2’ 
I/4. so that the frustration means competition of these structures at I 41‘. We do not 
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-1  0- 

l?l 
0 0 1  0 1  0 3  O L  

%pure 5. Total energies corresponding to figure 4 .  FigureQ Temperature dependences of thesublattice 
magnetization (TC T,) and the gap in the excitation 
spectrum (T> TN) in the frustrated and non-frus- 
trated cubic lattice, S = t. 

discuss here the case when I’ < 0 where the instability with respect to the spiral structure 
with 

Q, = Qy = Q, =cos-’(1/41l‘l) 

takes place. Thii case will be considered elsewhere. 
As follows from the expression for the spin-wave spectrum (3), terms, linear in q, 

are cancelled in w, at I’+ Z/4, similar to the ZD case at 1‘-  l/Z. However, unlike 
the ZD case, we do not have in 30 ‘dangerous’ divergent corrections to the sublattice 
magnetization. Nevertheless, one can assume that the spin-wave corrections with the 
‘soft’ spectrum w1 in the frustrated case are more important than in the case I’ = 0. 

The solutions to the equations of the SSWT (11)-(13) have the form 
A,=y+Sy’(cosq,c0sqy +wsq ,cosq ,  + c o s q y c o s q , ) - p  

yq = *v(cos qr + cos qv + cos qJ 

L , = Y v  +Y:,+Yz(cosq, - l ) + Y ~ ( c o s q ” c o s q ~ - l ) - ~  

Yq = $(cos q x  + cos qy)(Yxy + r:, cos q z )  

(29) 

for the phase with Q = (n. n, n) and 

(30) 

forthe phasewithe = (n, n, 0). Resultsof thenumericalcalculationsoftheground-state 
sublattice magnetization and total energy (for S = 1, when the spin-wavecorrections are 
most important) are presented in figures 4 and 5, respectively. One can see that the point 
of the transition between the structures I ‘ l l  = 0.30 differs weakly from the classical 
value at 0.25. The value of staggered magnetization at this point, namely s(0) - 0.27, is 
appreciably smaller than that for I’ = 0, namely3 - 0.42. The ranges of existence of the 
phases with Q = (n, n, n) and (n, n, 0) overlap in a broad interval, so that the non- 
magnetic phase does not arise, as also in the 2D case. 

As follows from the sum rule 

S(S + 1) = sz + (as-, . as,) 
(I 

the smallness of s(0) means inevitably the existence of developed spin fluctuations. 
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Table 1. Temperature dependcnce of the sublarrice magncruauon s ( T <  Th). chemical 
polcnlialr(T> T,)andrhonnngcorderparamelerrynndy'forS= handl '  = 0.2JI. 

0.00 
0.10 
0.20 
0.30 
0.40 
0.50 
0.60 
0.70 

0.30 3.20 1.13 
0.29 3.20 1.13 
0.28 3.19 1.12 
0.25 3.16 1.10 
0.21 3.07 1.06 
0.15 2.93 0.97 
0.09 2.70 0.85 
0.00 2.36 0.66 

0.75 -0.00 2.11 0.53 
0.85 -0.09 1.96 0.44 
0.95 -0.18 1.31 0.17 
1.05 -0.49 0.95 0.06 
1.15 -0.83 0.37 0.02 
1.25 -1.08 0.22 0.00 
1.35 -1.24 0.06 -0.05 

Therefore one can expect that the frustrated 3D systems may exhibit, despite the presence 
of LRO at finite T ,  some features of a spin liquid. In the next section we investigate the 
SRO above TN.  

5. Simple-cubic lattice at finite temperatures 

We consider the AFM structure with Q = (YI, YI, n) near the point of instability putting 
I' = 0.241. Temperature dependences of the staggered magnetization at T C TN and of 
the gap in the spin-wave spectrum A = (Ai - yZ)'p at T >  TN, calculated from (11)- 
(14) are shown in figure 6. Compared with the case I' = 0, TN/I decreases from 1.13 to 
0.70 at S = 4 and from 5.9 to 3.4 at S = $. The temperature dependences of y and y' are 
presented in tables 1 and 2. At T >  TN,  these quantities are characteristics of SRO. The 
phase transition with vanishing of y ( T )  and y ' ( T )  at high Tis an artefact of the mean- 
field approximation; strictly speaking, a local SRO parameter does not exist and is 
removed by fluctuations [12] (cf also the 1/N-expansion for the Kondo problem [NI). 
Thus at small y and y ' ,  our approach is inadequate. Therefore, we determine the 
temperature interval with strong sRO as the region between TN and the temperature of 
rapid decrease in y(T) .  The parameter y '  characterizes the SRO corresponding to the 
(z, YI, 0) structure. One can see that y ' ( T )  decreases more rapidly than y ( T ) ,  and 
y ' / y  

The correlation length may be estimated as - I / A ( T ) .  As follows from figure 6, 
the region with appreciable SRO ( E  > 1) is about 40% of TN for S = t .  Thus, similar to 
the quasi-zo systems [19], the width of the region with strong SRO in the frustrated 3D 
systems is large in comparison with that in the case I' = 0 where it makes up about 1% 
of TN (figure 6). 

I ' / I  at T > TN,  so that the 'foreign' SRO is suppressed. 
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Table 2. Temperature dependence of the sublattice magnetization 3 (T < TN), chemical 
potentialp(T> T,)andshort-ran$eorderparametersyandy'forS =Pandl '=  0.241. 
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TI1 

0.00 
0.40 
0.80 
1.20 
1.60 
2.00 
2.40 
2.80 
3.20 
3.60 

S 

1.25 
1.17 
1.10 
0.99 
0.84 
0.67 
0.53 
0.29 
0.04 
0.00 

YII Y ' l l  

9.07 3.85 
9.05 3.83 
8.98 3.80 
8.75 3.64 
8.36 3.39 
7.88 3.09 
7.37 2.79 
6.56 2.30 
5.49 1.69 
4.70 1.30 

TI1 P I 1  Y l i  Y ' l l  
4.00 -0.56 1.95 0.18 
4.40 -1.58 0.65 0.01 
4.80 -2.25 0.09 -0.03 

To understand the peculiar features of the 3D situation we treat analytically the case 
where y = 2y' (an analogue of the classical case I' = 1/4; in the classical limit, y = 
31(2S + 1) and y '  = 61'(2S + 1)). Then the spin-wave spectrum at q-' 0 is given by 

E: = W ( 4 : q :  + 4:4: + 4243 + W ) .  (31) 

As follows from the calculation of the spin-correlation function (S, . So} in the s s w  [I31 
by the multi-dimensional saddle-point method, the quantity 5 = (yy'/6A2)'Iq is simply 
thecorrelationlength,whichisdivergentat T =  TN(inourcase, TN - 6 = y - 2 y ' + O ) .  
Calculating the integral in (11) at s = 0 we obtain 

;(E) = 2 x  6 (E  - EP)AP 
P 

" d x  
= 2.119. x(x2 - l ) l '2  

Then the correlation length is expressed as 

E = (n3/241i1213)[y(2S + 1)/T] = y(2S + 1)/4T. (33) 

Thus the limiting case considered demonstrates the peculiar features of the frustrated 
3D state: a small value of TN and a large width of the region with strong SRO ( E  9 1 at 
T 9  y) .  Unlike the ZD case, c ( T )  demonstrates power-law rather than exponential 
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behaviour. Estimate of the 'spin-wave' damping at k-, 0 (k  < T / I )  from (25) for the 
spectrum (31) yields 

V Yu Irkhin et al 

r - T21yS - A = ( yy ' )1 /2 /52 .  (34) 
Thus the gap is smeared in the frustrated 3D case as well as in the frustrated ZD case. 

6. Discussion 

In the present paper we have applied the ssw [13] to investigate the properties of 
frustrated ZD and 3D systems both in the ground state and at finite temperatures. Our 
calculations demonstrate thar the spin-liquid state with zero staggered magnetization 
does not form within the approach used. The question of the role of quantum effects 
and collective excitations remains open. 

At the same time, for finite Tthe behaviour of frustrated system is reminiscent of a 
spin-liquid (RVB-type) state. To describe systems exhibiting spin-liquid-type properties 
with pseudospin degrees of freedom [lo], a treatment of anisotropic spin Hamiltonians 
would be useful. However, this seems to be a difficult mathematical problem. 

The most important physical result of the paper is the presence in frustrated 30 
systems of a wide temperature region above TN with pronounced SRO. Note that a 
similar conclusion holds for quasi-zD systems [19]. In thisconnection, experimental data 
demonstrating the existence of the SRO above TN are instructive. For example, strong 
SRO vanishing sharply at T = 5TN was observed in MnO and KMnF3 using the electron 
diffraction technique [20]. As follows from our consideration, Heisenberg systems 
demonstrating such a behaviour should possess frustrating exchange interactions. The 
role of frustrations for the strong SRO above TN was discussed in connection with 
experimental data on GdB6 [21] and pyrochlore-structure compounds [22]. SRO above 
TN is observed in helicoidal antiferromagnets such as Tb, Dy, Ho [23] and, in particular, 
ZnCr2Se, [24]. 

For frustrated itinerant-electron systems such as YMn,-,Sc, [25] the situation may 
be more complicated because of the non-Heisenberg character of the exchange. Thus, 
a generalization of our approach to real lattices and various microscopic models would 
be of interest. 
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